
THE EFFECT OF THREE-DIMENSIONAL
FREESTREAM DISTURBANCES ON THE

SUPERSONIC FLOW PAST A WEDGE∗

Peter W. Duck
Department of Mathematics

University of Manchester

D. Glenn Lasseigne
Department of Mathematics and Statistics

Old Dominion University
Norfolk, VA 23529

M. Y. Hussaini
Program in Computational Science and Engineering

Florida State University
Tallahassee, FL 32306

Abstract

The interaction between a shock wave (attached to a wedge) and small amplitude, three-
dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The
paper extends the two-dimensional study of Duck et al 1, through the use of vector potentials,
which render the problem tractable by the same techniques as in the two-dimensional case, in
particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately
chosen coordinates.

Results are presented for specific classes of freestream disturbances, and the study shows
conclusively that the shock is stable to all classes of disturbances (i.e. time periodic per-
turbations to the shock do not grow downstream), provided the flow downstream of the
shock is supersonic (loosely corresponding to the weak shock solution). This is shown from
our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far
downstream of the shock.
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1 Introduction

The interaction of freestream disturbances with shock waves is an important practical prob-
lem, with particular regard to the operation of high-speed flight vehicles. Of particular
interest are the consequences of these disturbances on boundary-layer receptivity, and this
paper may be regarded as a step in this process.

In the case of an isolated shock, Moore 2, Ribner 9 and McKenzie & Westphal 4 showed
that a single wavelength entropy, acoustic or vorticity wave, upstream of the shock, produces
a disturbance comprising a mixture of all three classes downstream of the shock. When the
shock is associated with the flow past a rigid body, the situation is much more complicated,
due to the reflection and refraction of disturbances between the body surface and the shock
itself, the latter distorting as a result, a process which further complicates the flow structure.
This process was considered by Carrier 5 and Van Dyke 6 with particular regard to the
problem of supersonic flow past a wedge performing small amplitude oscillations, the shock
remaining attached to the wedge tip. These problems raise questions regarding the stability
of the shock, and this aspect has been considered in the two-dimensional context (associated
with wedge flows, the shock remaining attached to the wedge tip at all times) by Levinson7,
Carrier 8, Henderson & Atkinson 9, Rusanov & Sharakshannae 10 and Salas & Morgan11. The
overall conclusion is that if the flow downstream of the shock is subsonic (loosely classified
as the strong shock solution), then the shock is unstable, in so far as disturbances grow
downstream. If, on the other hand, the flow behind the shock is supersonic (loosely classified
as the weak shock solution), then the shock is stable, with disturbances not growing in
amplitude downstream.

This aspect was considered in some detail by Duck et al. 1, again for the case of super-
sonic flow past wedges, subject to two-dimensional disturbances. This latter paper (where
there is also a more detailed summary of previous work in this area) showed that two-
dimensional disturbances, impinging upon the weak shock solution, do not grow downstream,
but rather produce constant amplitude or weakly decaying oscillatory waves downstream.
The conditions which distinguish between the two types of behaviours were determined and
a decomposition of the far-field, suggested by the analytic solution, was made. The result
was that there is a shadow region dependent on the incoming disturbance. If the direc-
tion of propagation of the plane-wave acoustic disturbance generated at the shock by the
plane-wave incoming disturbance intersects the wedge surface, then there is a non-decaying
oscillatory pressure disturbance on the wedge surface. In any case, there are two weakly
decaying single-wavelength oscillatory disturbances on the wedge surface that are due to
the requirement that the shock remain attached. One is traveling at the mean-flow speed
plus the speed of sound, and the other travels at the mean-flow speed minus the speed of
sound. Thus, these are clearly regular acoustic waves which emanate from a point source
(the wedge apex) of fixed temporal frequency as prescribed by the incoming disturbance. In
addition to these more obvious effects, there is also a local field effect which is broad based
in wavelength. While the first three modes of pressure disturbances at the wedge surface
can indeed interact with the boundary layer, it is the last disturbance with the inclusion of
short wavelength disturbances that should have the most effect on the growing boundary
layer. In this latter paper, the side issue of shock stability to two-dimensional disturbances
was also addressed. The aim of the present paper is to extend the ideas of Duck et al. 1 to
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three-dimensional disturbances; indeed, little three-dimensional work of this type appears to
have been undertaken in the past.

2 Formulation

Throughout this paper, we use subscript 1 to denote quantities upstream of the shock, and
subscript 2 to denote downstream quantities. The wedge is taken to make an angle θ with
respect to the oncoming flow, with (x∗, y∗, z∗) coordinates parallel and perpendicular to the
upstream flow, with z∗ being the “crossflow” direction. The upstream basic flow velocity
has magnitude U∗

1 , with Mach number M1 and density ρ∗1, and temperature T ∗1 . The ratio
of specific heats γ is assumed to be constant, and throughout this paper all our numerical
results take γ = 1.4. The velocity vector is written as U∗

1 (u, v, w), with respect to (x∗, y∗, z∗)
coordinates, and the density is then written ρ∗1ρ, pressure as ρ∗1R

∗T ∗1 p (where R∗ denotes the
gas constant) and the temperature is T ∗1 T .

The Rankine-Hugoniot relations provide a link between conditions upstream and down-
stream of the shock. For the basic (steady) flow, when the downstream flow is uniform and
parallel to the wedge surface, the following classical result is obtained (see, for example,
Liepmann and Roshko 12):

tan(β − θ)

tan β
=
u2

u1

=
ρ1

ρ2

=
(γ − 1)M2

1 sin2 β + 2

(γ + 1)M2
1 sin2 β

, (2.1)

where β is the angle between the shock and the wedge centerline (i.e., y∗ = 0) and u1 and
u2 are the non-dimensional velocity components perpendicular to the shock.

The relationship (2.1) yields two possible values for β, for a given value of θ (for θ <
θmax(M1)) with the so-called “weak shock” solution generally being characterized by super-
sonic flow downstream of the shock, whilst the other “strong shock” solution is generally
characterized by downstream subsonic flow. Note, however that there does exist a small,
weak shock regime, close to θ = θmax where the downstream flow is subsonic, i.e. the
downstream sonic line does not quite coincide with θmax.

We shall be concerned with the effect of small amplitude disturbances, which are intro-
duced into the flow ahead of the shock. The corresponding two-dimensional results, as stud-
ied by McKenzie and Westphal 4, for example, may be extended into the three-dimensional
contact, in quite a straightforward manner, when the z∗ variation is taken to be periodic (al-
though other, more general z∗ variations could be accomplished using Fourier Transforms).
We take ε (� 1) to be a measure of the amplitude of the freestream disturbance, and it
then turns out that the upstream disturbance may be classified into three distinct classes,
just as in the two-dimensional case.

(i) Acoustic waves: these are characterized by having a pressure perturbation, with
corresponding perturbations in velocity, density and temperature, but no change in entropy
or vorticity, to O(ε). Disturbances of this class take the form

p = 1 + Ê +O(ε2), (2.2)
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u = 1− α1εÊ

γM2
1 (α1 + ω)

+O(ε2), (2.3)

v = − α2εÊ

γM2
1 (α1 + ω)

+O(ε2), (2.4)

w = − α3εÊ

γM2
1 (α1 + ω)

+O(ε2), (2.5)

ρ = 1 +
εÊ

γ
+O(ε2), (2.6)

and

T = 1− ε(γ − 1)Ê

γ
+O(ε2), (2.7)

where Ê is the normal mode exponential, i.e.

Ê = exp{iα1x1 + iα2y1 + iα3z + iωt}, (2.8)

with

ω = −α1 ± 1

M1

[α2
1 + α2

2 + α2
3]

1/2 (2.9)

being the frequency for the given wavenumbers. In the above, x1 and y1 are parallel
and perpendicular to the upstream flow respectively (both perpendicular to z); the non-
dimensionalisation is carried out using one of the wavelengths of the disturbances as the
typical lengthscale, e.g. by setting α1 to unity. The modes with the positive sign above
in (2.9) are usually referred to as the slow modes, whilst those with the negative sign are
usually referred to as the fast modes.

(ii) Vorticity waves: these are characterized by having no density, temperature or pressure
disturbances to O(ε), and thus the upstream flow takes the form

u = 1 + εΩz
α2

α2
1 + α2

2

Ê +O(ε2), (2.10)

v = ε

[
−Ωz

α1

α2
1 + α2

2

− Ωx
α3

α2
2 + α2

3

]
Ê +O(ε2), (2.11)

w = εΩx
α2

α2
2 + α2

3

Ê +O(ε2), (2.12)

and
p, T, ρ = 1 +O(ε2), (2.13)

with
ω = −α1. (2.14)

The exponential term Ê is unaltered from (2.8), and the parameters Ωz and Ωx must be
specified. In comparison with the two-dimensional case, the three-dimensional case allows
for an extra vorticity mode.
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(iii) Entropy waves: these have no disturbance pressure or velocity components to O(ε),
and may therefore be written in the form

ρ = 1 + εÊ +O(ε2), (2.15)

T = 1− εÊ + O(ε2), (2.16)

u, p = 1 + O(ε2), (2.17)

and
v, w = O(ε2), (2.18)

with ω defined by (2.14) and Ê by (2.8), again.
In the following section of the paper, we consider the effects that these waves have on a

shock wave attached to a wedge. The complication introduced by the presence of the wedge
is that a single mode of the above type, upstream of the shock, will trigger modes of all three
types, of all wavenumbers behind the shock; the only quantities preserved across the shock
(provided ε� 1) are the frequency parameter ω and the spanwise wavenumber α3.

3 The Downstream Solution

The flow downstream of the shock comprises the uniform flow solution plus a small ampli-
tude (O(ε)) perturbation, triggered by the freestream disturbances described in the previous
section. We take non-dimensional coordinates parallel and perpendicular to the wedge (per-
pendicular to the z direction in both cases) as x2 and y2, respectively, with corresponding
velocity components (u2, v2).

We now write the solution downstream of the shock in the form

u2 = U2 + εũ+O(ε2), (3.1)

v2 = εṽ +O(ε2), (3.2)

w = εw̃ +O(ε2), (3.3)

ρ = ρ2 + ερ̃+O(ε2), (3.4)

p = p2 + εp̃+O(ε2), (3.5)

and
T = T2 + εT̃ +O(ε2). (3.6)

Substitution of these expansions into the governing (inviscid) equations of motion, continuity
and energy equations and equations of state then leads to

ρ̃t + U2ρ̃x2 + ρ2ũx2 + ρ2ṽy2 + ρ2w̃z = 0, (3.7)

ρ2{ũt + U2ũx2}+
1

γM2
1

p̃x2 = 0, (3.8)
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ρ2{ṽt + U2ṽx2}+
1

γM2
1

p̃y2 = 0, (3.9)

ρ2{w̃t + U2w̃x2}+
1

γM2
1

p̃z = 0, (3.10)

ρ2{T̃t + U2T̃x2} −
γ − 1

γ
{p̃t + U2p̃x2} = 0, (3.11)

and
p̃ = ρ2T̃ + T2ρ̃. (3.12)

Much of the success of the approach used by Carrier 5, Van Dyke 6 and indeed by Duck
et al. 1 was due to the ability of being able to split the solution into two components, the one
including a velocity potential (which represented the acoustic wave component of the flow),
and the other a stream function (which represented the vorticity wave component of the
flow). It is clearly not possible to use the latter in the context of three-dimensional flows,
however an alternative is the introduction of a vector potential. This concept, originally
due to Poincaré 13, has been used in a number of fluid mechanics investigations over the
years, although the appropriate boundary conditions have been the subject of discussion, as
detailed by Aziz and Hellums 14.

Specifically we write the perturbation velocity vector ũ = (ũ, ṽ, w̃) in the form

ũ = ∇φ+∇∧ E, (3.13)

where φ is the velocity potential, and E the vector potential. The above represents a non-
unique representation for ũ, and as such an additional relationship may be (arbitrarily)
specified. The most popular choice, and the one that we pursue here, is that the vector
potential can be required to be solenoidal, i.e.

∇ · E = 0. (3.14)

This leads to the vorticity vector then being merely the quantity −∇2E. Substitution of
(3.13) into (3.8) - (3.10) leads to the equations

∇2

{
φt + U2φx2 +

p

γM2
1ρ2

}
= 0, (3.15)

and
∇2{Et + U2Ex2} = 0. (3.16)

It then follows that p̃ satisfies

p̃ = −γp2

a2
s

[φt + U2φx2], (3.17)

and elimination of the dependent variables ρ̃ and T̃ gives the equation for φ

∇2φ =
1

a2
s

[φtt + 2U2φxt + U2
2φx2x2], (3.18)
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where

as =
T

1/2
2

M1

. (3.19)

If we write E = (E(1), E(2), E(3)), then on account of our comments above, we impose the
condition

E(1)
x2

+ E(2)
y2

+ E(3)
z = 0. (3.20)

A further quantity must also be introduced, namely ψ′(y2, z, t), which describes the displace-
ment of the shock wave from its undisturbed state.

This type of formulation then allows us to follow closely the two-dimensional approach
adopted by Duck et al. 1. It is now possible to write the general solution for φ, ψ

′
, and the

E(n) in the following form, assuming boundedness at the apex of the wedge:

φ = e
iwt− iωU2x2

U2
2
−a2

s
+iα3z ∞∑

ν=0

{aν cosh(νθ2) + bν sinh(νθ2)}Jν(k̂er), (3.21)

E(n) = e
iωt− iωx2

U2
− iωλy2a2

s
U2(U2

2
−a2

s)
+iα3z ∞∑

ν=0

c(n)
ν Jν(k̂eξ̂y2), (3.22)

and

ψ′ = e
iωt− iωλy2U2

U2
2
−a2

s
+iα3z ∞∑

ν=0

dνJν(k̂eξ̂y2), (3.23)

where we have written
ω̂ =

ω

as

, (3.24)

k̂ =
ω̂

β̂2
, (3.25)

β̂2 =
U2

2 − a2
s

a2
s

, (3.26)

k̂2
e = k̂2 +

α2
3

β̂2
, (3.27)

λ = cot(β − θ), (3.28)

ξ̂ =
√
λ2 − β̂2, (3.29)

r2 = x2
1 − β̂2y2

2, (3.30)

and
tanh θ2 = β̂y2/x2. (3.31)

If we impose impermeability on the wedge surface, we immediately require

bν = 0 ∀ν, (3.32)
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whilst if the shock remains attached at the tip, then d0 = 0. As noted by Duck et al. 4 (for
example), it is also reasonable to set the ν = 0 coefficients of the other terms in the series
to zero, which correspond to transient-type modes, and so we write

a0 = c
(1)
0 = c

(2)
0 = c

(3)
0 = 0. (3.33)

The key results for the velocity components and pressure are then

ũ = −eiωt− iU2ωx2
U2

1
−a2

s
+iα3z ∞∑

ν=0

k̂e

2

[
2iω̂U2

k̂eβ̂2as

aν + aν−1(1 + δν−1,0)− aν+1

]
cosh νθ2Jν(k̂er)

+e
iωt− iωx2

U2
− iωλy2a2

s
U2(U2

2
−a2

s)
+iα3z ∞∑

ν=0

[
k̂e

2

(
−2iλω̂as

k̂eU2β̂2
c(3)ν + ξ̂

(
c
(3)
ν+1 − c

(3)
ν−1(1 + δν−1,0)

))
− iβ̃c(2)ν

]
Jν(k̂eξ̂y2),

(3.34)

ṽ = e
iωt− iU2ωx2

U2
1
−a2

s
+iα3z ∞∑

ν=0

k̂eβ̂

2
(aν−1 + aν+1) sinh(νθ2)Jν(k̂er)

+e
iωt− iωx2

U2
− iωλya2

s
U2(U2

2
−a2

s)
+iα3z ∞∑

z=0

[
iβ̃c(1)ν +

iω

U2
c(3)ν

]
Jν(k̂eξ̂y2), (3.35)

w̃ = e
iωt− iU2ωx2

U2
2
−a2

s
+iα3z ∞∑

ν=0

iβ̃aνJν(k̂er) cosh νθ2

−eiωt+iα3z− iωx2
U2

− iωλy2a2
s

U2(U2
2
−a2

s)

∞∑
ν=0

[
iω̂as

U2

c(2)ν +
k̂e

2

(
−2iλω̂as

k̂eU2β̂2
c(1)ν + ξ̂

(
c
(1)
ν+1 − c

(1)
ν−1(1 + δν−1,0)

))]
Jν(k̂eξ̂y2),

(3.36)
and

p̃ =
γp2k̂e

2as
e

iωt− iU2ωx2
U2

2
−a2

s
+iα3z ν=∞∑

ν=0

[
2iω̂

k̂eβ̂2
aν +

U2

as
aν−1(1 + δν−1,0)− U2

as
aν+1

]
cosh(νθ2)Jν(k̂er),

(3.37)

where a−1 = c
(n)
−1 = d−1 = 0, and where δn,m is the Kronecker delta.

Although the solutions above satisfy the impermeability and apex conditions, as yet
these solutions do not satisfy the unsteady Rankine-Hugoniot conditions (McKenzie and
Westphal4) on the shock; following (and extending) the results of Duck et al. 1, these take
the form

u′2 + u2
ρ̃2

ρ2
=

(
1− 1

ρ2

)
R′ +

1

ρ2
(u′ρ̃1 + u′1), (3.38)

u′2 +
1

2
u2
ρ̃2

ρ2
+

a2
s

2γu2

p̃2

p2
= u′1 +

1

2
u1ρ̃1 +

p̃1

2γM2
1u1

, (3.39)

u′2 −
a2

s

(γ − 1)u2

ρ̃2

ρ2
+

a2
s

(γ − 1)u2

p̃2

p2
=
(
1− u1

u2

)
R′ +

u1

u2
u′1 (3.40)

− ρ̃1

(γ − 1)M2
1u2

+
p̃1

(γ − 1)M2
1u2

,
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v′2 = v′1 + (u1 − u2)ψ
′
σ, (3.41)

and
w′

2 = w′
1 + (u1 − u2)ψ

′
z, (3.42)

with
R′ = ψ′t + v1ψ

′
σ. (3.43)

In equations (3.38)-(3.43), σ denotes the unperturbed distance along the shock, (u′, v′, w′)
denote the velocity perturbations perpendicular to the undisturbed shock, parallel to the
shock and perpendicular to the z direction, and parallel to the z direction, respectively, and
(u, v, 0) denote the corresponding base flow velocity components. Eliminating ρ̃2 from the
above equations, and then utilizing (3.34)-(3.37), yields the following four equations for each
of the ν ≥ 0:

cos(β − θ)

{
− k̂e

2

[
2iω̂U2

k̂eβ̂2as

aν + aν−1(1 + δν−1,0)− aν+1

]
cosh νθ0

+

[
k̂e

2
(−2iλω̂as

k̂eU2β̂2
c(3)ν + ξ̂

(
c
(3)
ν+1 − c

(3)
ν−1(1 + δν−1,0)

)
− iβ̃c(2)ν

]}

+ sin(β − θ)

{
k̂eβ̂

2
(aν−1 + aν+1) sinh(νθ0) + iβ̃c(1)ν +

iω̂as

U2
c(3)ν

}

−(ū1 − ū2) sin(β − θ)
k̂e

2

{
−2iU2ω̂λ

k̂eβ̂2as

dν + ξ̂ (dν+1 − dν−1(1 + δν−1,0))

}
= R(1)

ν , (3.44)

{
A1

B1

}{
sin(β − θ)

[
− k̂e

2

[
2iω̂U2

k̂eβ̂2as

aν + aν−1(1 + δν−1,0)− aν+1

]
cosh νθ0

+

[
k̂e

2

(
−2iλω̂as

k̂eU2β̂2
c(3)ν + ξ̂

(
c
(3)
ν+1 − c

(3)
ν−1(1 + δν−1,0)

))
− iβ̃c(2)ν

]]

− cos(β − θ)

[
k̂eβ̂

2
(aν−1 + aν+1) sinh(νθ0) + iβ̃c(1)ν +

iω

U2
c(3)ν

]}

+

{
A2

B2

}{
v̄1 sin(β − θ)

k̂e

2

[
−2iω̂U2λ

k̂eβ̂2as

dnu+ ξ̂ (dν+1 − dν−1(1 + δν−1,0))

]
+ iωdν

}

+

{
A3

B3

}{
k̂e

2

{
2iω̂

k̂eβ̂2
aν +

U2

as
aν−1(1 + δν−1,0)− U2

as
aν+1

}
cosh(νθ0)

}

=

{
R(2)

ν

R(3)
ν

}
, (3.45)

and

iα3 cosh(νθ0)aν− iω
U2
c(2)ν − k̂e

2
(−2iλω̂as

k̂eU2β̂2
c(1)ν +ξ̂

(
c
(1)
ν+1 − c

(1)
ν−1)(1 + δν−1,0)

)
−iα3(u1−u2)dν = R(4)

ν .

(3.46)
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These equations must also be augmented with the condition arising from the solenoidal
condition on the vector potential namely

− iω
U2

c(1)ν +
k̂e

2
(−2iλω̂as

keU2β̂2
c(2)ν + ξ̂

(
c
(2)
ν+1 − c

(2)
ν−1)(1 + δν−1,0)

)
+ iα3c

(3)
ν = 0. (3.47)

Terms used in the above are
tanh θ0 = β̂ tan(β − θ), (3.48)

A1 =
1

2
, (3.49)

A2 =
1

2

(
1− 1

ρ2

)
, (3.50)

A3 =
as

2u2

, (3.51)

B1 = 1 +
a2

s

(γ − 1)u2
2

, (3.52)

B2 = −
[

a2
s

(γ − 1)u2
2

− u1

u2

](
1− 1

ρ2

)
, (3.53)

B3 =
γas

(γ − 1)u2

. (3.54)

The R(n)
ν , as in Duck et al. 1, are to be determined from the freestream conditions. In

particular in order to write the exponential terms, arising from the upstream solution, in
terms of Bessel functions the following is particularly useful:

exp[i(α1 cot β + α2)(cos θ + λ sin θ)y2] = e
−i

U2ωλ

U2
2
−a2

s
y2

ei sin θ̃ k̂eξ̂y2 (3.55)

= e
−i

U2ωλ

U2
2
−a2

s
y2

∞∑
ν=0

eiνθ̃ + (−1)νe−iνθ̃

1 + δν,0

Jν(k̂eξ̂y2), (3.56)

where

θ̃ = sin−1

(α1 cot β + α2)(cos θ + λ sin θ) + U2ωλ
U2

2−a2
s

k̂eξ̂

 . (3.57)

Other details are routine, and omitted for reasons of brevity.
The combined system (3.44)-(3.47) then represents a closed (recursive-type) system de-

termining the aν+1, c
(n)
ν+1, dν+1.
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4 Some Numerical Results

The first set of data we present is for the particular case M1 = 5, θ = 25o (weak shock
solution), for the particular case of a slow acoustic mode with α1 = 1, α2 = 0, and α3 = 1.
Fig. 1a shows results for the perturbation pressure on the wall (y2 = 0). Here, and in all
cases the solidus denotes the real part of a function, the dashed line the imaginary part.
This figure presents a picture reminiscent of results found in a number of corresponding two-
dimensional cases by Duck et al. 1, namely that of an oscillatory-type nature downstream.
Fig. 1b shows the corresponding perturbation shock location; this too takes on a similarly
oscillatory nature. Figs. 2a, 2b show the corresponding results for the fast mode case (other
data remaining the same as for figs. 1). These figures are to be compared with fig. 2 and
fig. 3 of Duck et al. 1 where the same conditions apply except that α3 = 0 in those graphs.
The difference between the two-dimensional results and the three-dimensional results are in
whether or not the disturbance produces an acoustic wave behind the shock that intersects
with the surface. In response to this particular slow mode, the pressure response at the
surface for the two-dimensional disturbance decays algebraically while the shock position
shows a characteristic single wavelength response in the far-field limit. On the other hand,
the surface pressure response to the three-dimensional slow-mode disturbance does not decay
and shows a multi-wavelength pattern as is to be expected if a decomposition of the far field
behaviour applies to the three-dimensional case as it does for the two-dimensional case.
The shock position shows a two-wavelength structure as would be expected by the primary
acoustic disturbance reflecting off the wedge surface and interacting with the shock from
behind. There is very little difference between the responses to a two-dimensional fast-
mode disturbance and a three-dimensional fast-mode disturbance. A search in parameter
space would lead to the same conclusion as in the two-dimensional case: either the surface
pressure has a non-decaying component and an algebraically decaying component or it has
only an algebraically decaying component. This is significant in that the solution in the
absence of a wedge indicates that the choices are between only a non-decaying response and
an exponentially decaying response (see Hussaini et al. 15, Jackson et al. 16, Lasseigne &
Hussaini 17). This issue was pursued in detail in Duck et al. 1 where it is determined that
the condition that the shock remain attached to the apex of the wedge is the source for
the algebraically decaying portion of the response – the apex is in effect a point source for
additional acoustic waves. The interaction of these algebraically decaying acoustic waves
with the shock in turn produces an algebraically decaying portion in both the entropy and
vorticity modes. Another reason that it is important to determine that the pressure has
only a decaying or sustained oscillatory behaviour downstream is that, as mentioned in the
analysis of the response to the two-dimensional disturbances, the potential functions have
components of exponential growth in them. The calculation of the physical quantities of
pressure, velocity and vorticity are therefore dependent on some fortuitous cancellations, or
they themselves would be exponentially growing. In the following section we investigate the
downstream behaviour of the three-dimensional perturbation solution in some detail.
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5 The Far Downstream Behaviour/Stability Problem

The results of the previous section show that a general growth in physical quantities, as x2

increases does not occur even though the potential functions have an exponentially growing
component in them. This is similar to the two-dimensional results as considered by Duck
et al. 1, in which it was shown by examining the recurrence relations that only decaying or
sustained physical solution oscillations were possible. The same type of analysis is possible
for the three-dimensional case, but indeed has its own peculiarities as will be seen.

In order to analyze the x2 →∞ behaviour, we consider the homogeneous solution of the
system (3.44)-(3.47), and consider the limit as ν →∞. In particular, we write

c(n)
ν ≈ C

(n)
0 Kν , dν ≈ D0K

ν , and aν ≈ A0K
νe−νθ0 , (5.1)

where K is an eigenvalue whose precise value (including location in complex space) serves
to determine the ultimate downstream behaviour of the disturbance. If |K| > 1, then using
the generating function for Bessel functions, we have (for example)∑∞

ν=1 dνJν(z) ≈ ∑∞
ν=−∞D0K

νJν(z)

≈ D0e
1
2(K− 1

K )z as |z| → ∞.

(5.2)

Thus exponential growth occurs as |z| → ∞ if <
{
z
(
K − 1

K

)}
> 0. If we substitute (5.1)

into (3.44) - (3.47), allow ν →∞, and discard the inhomogeneous terms, then we obtain the

following five linear homogeneous equations for the coefficients A0, C
(n)
0 and D0:

1

2
iβ̃A0 − iω

U2
C

(2)
0 − k̂e

[
(− iλω̂as

k̂eU2β̂2
+

1

2
ξ̂(K − 1

K
)

]
C

(1)
0 − iβ̃(u1 − u2)D0 = 0, (5.3)

− iω
U2
C

(1)
0 + k̂e

[
− iλω̂as

k̂eU2β̂2
+

1

2
ξ̂(K − 1

K
)

]
C

(2)
0 + iβ̃C

(3)
0 = 0, (5.4)

cos(β − θ)

{
− k̂e

4

[
2iω̂U2

k̂eβ̂2as

+
eθ0

K
− e−θ0K

]
A0

+k̂e

[
(− iλω̂as

k̂eU2β̂2
+

1

2
ξ̂(K − 1

K
)

]
C

(3)
0 − iβ̃C

(2)
0

}

+ sin(β − θ)

{
k̂eβ̂

4
(
eθ0

K
+ e−θ0K)A0 + iβ̃C

(1)
0 +

iω

U2
C

(3)
0

}

−(ū1 − ū2) sin(β − θ)k̂e

{
− iU2ω̂λ

k̂eβ̂2as

+
ξ̂

2
(K − 1

K
)

}
D0 = 0, (5.5)

{
A1

B1

}{
sin(β − θ)

[
− k̂e

4

(
2iω̂U2

k̂eβ̂2as

+
eθ0

K
− e−θ0K

)
A0
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+k̂e

[
− iλω̂as

k̂eU2β̂2
+

1

2
ξ̂(K − 1

K
)

]
C

(3)
0 − iβ̃C

(2)
0

]

− cos(β − θ)

[
k̂eβ̂

2
(
eθ0

K
+ e−θ0K)A0 + iβ̃C

(1)
0 +

iω

U2
C

(3)
0

]}

+

{
A2

B2

}{
v̄1 sin(β − θ0)

[
k̂e

(
− iω̂U2λ

k̂eβ̂2as

+
ξ̂

2
(K − 1

K
)

)
+ iω

]
D0

}

+

{
A3

B3

}{
k̂e

2

(
2iω̂

k̂eβ̂2
+
U2

as

eθ0

K
− U2

as

e−θ0K

)
A0

}
= 0. (5.6)

This equation is nonlinear in K but can be converted to a tenth-order linear, generalized
eigenvalue problem, which may be solved using the QZ algorithm by using the additional
variables

Â0 = KA0, Ĉ
(n)
0 = KĈ

(n)
0 ,

D̂0 = KD0.

(5.7)

It was shown by Duck et al. 4 that in the two-dimensional case, for situations in which the
downstream flow was supersonic, there were four imaginary eigenvalues (all with |K| < 1),
and two complex eigenvalues given by

K =
eθ0

U2

{
ias ±

[
U2

2 − a2
s

]1/2
}
. (5.8)

However, although these complex eigenvalues are such that |K| > 1, in both cases D0 = 0,
and due to some “fortuitous” cancellations, all physical quantities remain bounded as x2 →
∞ even though it is determined that the potential functions themselves grow exponentially.

In the three-dimensional case, we may expect, ten eigenvalues instead of the six in the
two-dimensional case. However it turns out generally that there are just eight distinct
eigenvalues (two of the eigenvalues being double eigenvalues). Generally we find: (i) four
imaginary eigenvalues, (ii) one complex conjugate pair of double eigenvalues of the form
±Kr + iKi, and (iii) one complex conjugate pair of eigenvalues also of the form ±Kr + iKi.

For θ = 25o, M1 = 5 α1 = 1 and α2 = 0, the four imaginary eigenvalues have magnitude
less than unity even as α3 increases from zero. The eigensolutions associated with these
eigenvalues do not contribute to any growth in any of the quantities calculated. Most in-
teresting, however, is the variation of these four eigenvalues as the wedge angle is increased.
All four eigenvalues approach K = i at the maximum wedge angle.

The (imaginary part of the) eigenvalues described by (i) are shown in fig. 3a, whilst the
real and imaginary parts of the eigenvalues described by (ii) and (iii) are shown in figs 3b,
3c respectively. Here we have just shown the eigenvalues with the positive value of Kr (the
other eigenvalue, corresponding to −Kr + iKi may obviously be simply deduced). We next
consider the effect of varying θ, for the parameters M1 = 5, α1 = 1, α2 = 0, and α3 = 1. The
variation of Ki of family (i) is shown in fig. 4a, and the variation of the real and imaginary
parts of eigenvalues described by (ii) and (iii) is shown in figs. 4b and 4c respectively. Again,
just the positive values of Kr are shown. It is seen that the double eigenvalues described by
(ii) are the only ones with |K| > 1 and therefore lead to potential exponential growth. It
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turns out that an analytic description of the eigenvalues described by (ii) is possible. The
result is

K =
eθ0

U2

 ik̂as

k̂e

±
[
U2

2 −
a2

sk̂
2

k̂2
e

]1/2
 . (5.9)

It is also possible to obtain analytic results for one set of eigen-coefficients corresponding to
these eigenvalues, namely

C
(1)
0 =

− iA0U2

2

{
−α3k̂eβ̂

2
(Ke−θ0 + eθ0

K
) + α3

[
k̂eξ̂
2

(K − 1
K

)− λik̂as

U2

]2}
α2

3U2 + ω2

U2
− U2

[
iλk̂as

U2
− k̂e ξ̂

2
(K − 1

K
)
]2 , (5.10)

C
(2)
0 = −iU2

ω

{
1

2
iα3A0 + C

(1)
0

[
iλk̂as

U2
− k̂eξ̂

2

(
K − 1

K

)]}
, (5.11)

C
(3)
0 =

iU2

ω

{
k̂eβ̂

4

(
Ke−θ0 +

eθ0

K

)
A0 + iα3C

(1)
0

}
, (5.12)

D0 = 0. (5.13)

The above solution readily reduces to the two-dimensional solution in the limit α3 → 0. Some
understanding of the origin of this other family of coefficients for this eigenvalue, and also
of the additional complex eigenvalue (iii) may be made by considering the two-dimensional

limit, α3 → 0 and seeking a solution to the system with A0 = D0 = C
(3)
0 = 0. After some

algebra, we find the following (four) eigenvalues:

K =
λik̂as

k̂eξ̂U2

± {
[
−λik̂as

k̂eξ̂U2

± ω

U2k̂eξ̂

]2

− 1} 1
2 , (5.14)

together with

C
(1)
0 = −U2k̂eξ̂i

2ω
C

(2)
0 {K − 1

K
− 2λik̂as

U2k̂eξ̂
}. (5.15)

Two of the above values for K correspond to (5.9), and this partly explains the origin of the

double eigenvalues. As α3 increases from zero, it is expected that A0, D0, and C
(3)
0 will no

longer be zero for this branch. The other pair of eigenvalues correspond to the eigenvalues
described by (iii).

Again it is important to note is that with the exception of the eigenvalues (ii), all eigenval-
ues of K correspond to |K| < 1, and thus are of limited physical significance. Interestingly at
the maximum value of θ, (corresponding to the maximum wedge angle for attached flow at a
particular freestream Mach number), all eigenvalues take on the same value, K = i. Turning
now to the effects of the eigenvalues described by (ii), again, as in the two-dimensional case,
it turns out that although seemingly these eigensolutions correspond to unstable (grow-
ing) downstream solutions, in fact the evaluation of physical quantities leads to solutions
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downstream which remain bounded. This is best illustrated by defining the following set of
functions:

Ẽ(n) = C
(n)
0 e

iωt− iωx2
U2

− iωλy2a2
s

U2(U2
2
−a2

s)
+iα3z ∞∑

ν=−∞
KνJν(k̂eξ̂y2), (5.16)

φ̃ = A0e
iωt− iωU2x2

U2
2
−a2

s
+iα3z ∞∑

ν=−∞
{Keθ2−θ0}νJν(k̂er), (5.17)

where K is defined by (5.9) and we write Ẽ = (Ẽ(1), Ẽ(2), Ẽ(3)). It would be expected that
Ẽ and φ̃ determine the far-downstream behaviour of the flow which grows downstream.
However inspection of the solution above, in the cases considered, leads to the conclusion
that

∇φ̃ = −∇ ∧ Ẽ. (5.18)

This then leads to all velocity components (and hence all physical quantities) remaining
bounded downstream. Numerically, it is determined that all physical quantities remained
bounded no matter what the parameters selected for the calculation, thus the above must
hold for all eigensolutions with |K| > 1.

In summary, therefore, we see that provided the flow downstream is supersonic then
disturbances will not grow downstream. This boundary of downstream behaviours is inde-
pendent of the crossflow wavenumber α3, and occurs along the ’line’ where β̂ = 0 (where
k̂ and k̂e simultaneously become singular, and also change from being real to imaginary
quantities). The result is that all of the Bessel functions in the series (3.21)-(3.23) will grow
downstream if the downstream flow is subsonic (although we note the comments of Salas &
Morgan11 stating that strong shock solutions could perhaps be stable under a different set
of boundary conditions).

We now address the nature of the downstream response to sustained excitation (i.e.
acoustic waves, entropy waves, or vorticity waves). Arguments similar to those employed by
Duck et al. 1 are again appropriate. The frequency of the disturbance downstream of the
shock is determined by the frequency of the disturbance upstream of the shock and both
wavenumbers of the disturbance tangential to the shock are also fixed by the deflection of the
shock produced by the upstream disturbance. There is a finite range of tangential wavenum-
bers that exclude the existence of plane acoustic waves which propagate downstream. If
the tangential wavenumbers lie outside of this range, then a plane wave propagates at an
angle θp to the shock. In the case of the tangential wavenumbers being within the excluded
range, an acoustic field is generated that decays algebraically rather than exponentially as
would be the case in the absence of the wedge. If the tangential wavenumber is outside of
the excluded range, then the solution in the presence of the wedge exhibits two types of be-
haviour, dependent upon the angle of propagation of an acoustic disturbance in the absence
of the wedge. If the angle of propagation θp is greater than the angle between the shock and
the wedge β − θ, then the pressure disturbances generated at the shock intersect with and
reflect from the wedge surface, leading to a non-decaying pressure field everywhere between
the shock and the wedge surface, with a superimposed algebraically decaying pressure field
owing to the requirement of an attached shock and zero velocity normal to the wedge sur-
face. If the angle of propagation θp is less than the angle between the shock and the wedge
surface, then the pressure field is divided into two regions by a ray emanating from the apex
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and parallel to the direction of propagation of the pressure disturbance in the absence of
the wedge. Between the shock and this ray there is a non-decaying pressure field, with the
aforementioned superimposed algebraically decaying component. Between the ray and the
wedge surface the pressure field is algebraically decaying and there is no component with
sustained oscillations. This was referred to as the shadow region by Duck et al. 1.

The various downstream limits are determined by the value of θ̃. If θ̃ is real, then the
wavenumber of the imposed disturbances lies within the excluded range, and the pressure
along any ray θ2 = constant decays algebraically For θ2 = θ0 the solutions does not decay
leading to the appropriate oscillatory behaviour necessary to match conditions at the shock.
If θ̃ is complex, then the condition∣∣∣∣∣∣

(α1 cot β + α2)(cos θ + λ sin θ) + U2ωλ
U2

2−a2
s

k̂eξ̂

∣∣∣∣∣∣ > 1, (5.19)

is satisfied. We also note that for equation (3.55) to be satisfied then sin θ̃ must remain real,
which requires that

θ̃ = ±π/2− iθ̃i, (5.20)

where

θ̃i = cosh−1

±(α1 cot β + α2)(cos θ + λ sin θ) + U2ωλ
U2

2−a2
s

k̂eξ̂

 . (5.21)

θ̃i is related to the angle between the direction of the shock and the direction of the acoustic
disturbance θp through tanh θ̃i = β̂ tan θp. If θ̃i is greater than θ0, then the generated or
transmitted acoustic waves intersect the wedge surface. For 0 < θ̃i < θ0, there are two
regions: a region of sustained oscillatory behaviour of the pressure field near the shock when
θ2 > θ̃i, and a region of algebraic decay of the pressure field near the wedge surface when
θ2 < θ̃i

These features are common to those found in the two-dimensional case by Duck et al.
1. Additionally, we can expect that the downstream (forced) behaviour will take the same
form as in the two dimensional case. Taking the wall pressure, for example, we may write
the decomposition

e−iωt−iβ̃zp = P0e
− iωU2x2

U2
2
−a2

s
+ik̂e cosh(θ̃i−θ0)x2

+ P1x
−1/2
2 e

−(
iωx2

U2−as
−i π

4
)
+ P2x

−1/2
2 e

−(
iωx2

U2+as
−i π

4
)
+Q(x2),

(5.22)
i.e., a solution with an oscillatory component, two decaying acoustic waves, and a (faster)
decaying component, Q(x2).

6 Conclusions

The interaction between a shock wave and three-dimensional freestream disturbances has
been considered, in particular the nature of the flow far downstream. The somewhat fortu-
itous cancelations that were found to occur in the analogous two-dimensional work (Duck
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et al. 1), again intriguingly occur, yielding a non-growing physical solution downstream,
thus confirming the stability of shocks with downstream supersonic flow, in line with the
widely-held belief regarding the stability of such shock waves. Our results also point to the
‘instability’ of shocks with downstream subsonic flow, since in that case the argument of
the Bessel functions in (3.21)-(3.24) becomes imaginary, and as a result exponential growth
will be expected downstream. Finally we note that the location of the boundary between
growing and non-growing downstream waves is unaffected by the crossflow wavenumber α3.
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Figure 1a. Wall pressure perturbations, M1 = 5, θ = 25o, (weak-shock solution), slow
acoustic mode, α1 = 1, α2 = 0, α3 = 1.

18



Figure 1b. Shock location perturbations, M1 = 5, θ = 25o, (weak-shock solution), slow
acoustic mode, α1 = 1, α2 = 0, α3 = 1.
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Figure 2a. Wall pressure perturbations, M1 = 5, θ = 25o, (weak-shock solution), fast
acoustic mode, α1 = 1, α2 = 0, α3 = 1.
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Figure 2b. Shock location perturbations, M1 = 5, θ = 25o, (weak-shock solution), fast
acoustic mode, α1 = 1, α2 = 0, α3 = 1.
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Figure 3a. Variation of Ki of the eigenvalue family (i) with α2, for θ = 25o, M1 = 5
(weak-shock solution), α1 = 1, α2 = 0.
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Figure 3b. Variation of Ki of the eigenvalue family (ii) and (iii) with α2, for θ = 25o,
M1 = 5 (weak-shock solution), α1 = 1, α2 = 0.
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Figure 3c. Variation of Kr of the eigenvalue family (ii) and (iii) with α2, for θ = 25o,
M1 = 5 (weak-shock solution), α1 = 1, α2 = 0.
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Figure 4a. Variation of Ki of the eigenvalue family (i) with θ, for M1 = 5 (weak-shock
solution), α1 = 1, α2 = 0, α3 = 1.
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Figure 4b. Variation of Kr of the eigenvalue family (ii) and (iii) with θ, for M1 = 5
(weak-shock solution), α1 = 1, α2 = 0, α3 = 1.
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Figure 4c. Variation of Ki of the eigenvalue family (ii) and (iii) with θ, for M1 = 5
(weak-shock solution), α1 = 1, α2 = 0, α3 = 1.
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